6 research outputs found

    Combinación de clasificadores: construcción de características e incremento de la diversidad

    Get PDF
    Los multiclasificadores son actualmente un área de interés dentro del Reconocimiento de Patrones. En esta tesis se presentan tres métodos multiclasificadores: "Cascadas para datos nominales", "Disturbing Neighbors" y "Random Feature Weights". Las Cascadas permiten que clasificadores que necesitan entradas numéricas mejoren sus resultados, tomando como entradas adicionales las estimaciones de probabilidad de otro clasificador que sí pueda trabajar con datos nominales. "Disturbing Neighbors" aumenta el conjunto de entrenamiento de cada clasificador base a partir de la salida de un clasificador NN. El NN de cada clasificador base es obtenido de forma aleatoria. Random Feature Weights es un método que utiliza árboles cómo clasificadores base, que modifica la función de mérito de los mismos mediante un peso aleatorio. Además la tesis aporta nuevos diagramas para la visualización de la diversidad de los clasificadores base: Diagramas de Movimiento Kappa-Error y los Diagramas de Movimiento Relativo Kappa-Erro

    Modelling laser milling of microcavities for the manufacturing of DES with ensembles

    Get PDF
    A set of designed experiments, involving the use of a pulsed Nd:YAG laser system milling 316L Stainless Steel, serve to study the laser-milling process of microcavities in the manufacture of drug-eluting stents (DES). Diameter, depth, and volume error are considered to be optimized as functions of the process parameters, which include laser intensity, pulse frequency, and scanning speed. Two different DES shapes are studied that combine semispheres and cylinders. Process inputs and outputs are defined by considering the process parameters that can be changed under industrial conditions and the industrial requirements of this manufacturing process. In total, 162 different conditions are tested in a process that is modeled with the following state-of-the-art data-mining regression techniques: Support Vector Regression, Ensembles, Artificial Neural Networks, Linear Regression, and Nearest Neighbor Regression. Ensemble regression emerged as the most suitable technique for studying this industrial problem. Specifically, Iterated Bagging ensembles with unpruned model trees outperformed the other methods in the tests. This method can predict the geometrical dimensions of the machined microcavities with relative errors related to the main average value in the range of 3 to 23%, which are considered very accurate predictions, in view of the characteristics of this innovative industrial task.This work was partially funded through Grants fromthe IREBID Project (FP7-PEOPLE-2009-IRSES- 247476) of the European Commission and Projects TIN2011- 24046 and TECNIPLAD (DPI2009-09852) of the Spanish Ministry of Economy and Competitivenes

    An SVM-based solution for fault detection in wind turbines

    Get PDF
    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.Projects, CENIT-2008-1028, TIN2011-24046, IPT-2011-1265-020000 and DPI2009-06124-E/DPI of the Spanish Ministry of Economy and Competitivenes

    Using ensembles for accurate modelling of manufacturing processes in an IoT data-acquisition solution

    Get PDF
    The development of complex real-time platforms for the Internet of Things (IoT) opens up a promising future for the diagnosis and the optimization of machining processes. Many issues have still to be solved before IoT platforms can be profitable for small workshops with very flexible workloads and workflows. The main obstacles refer to sensor implementation, IoT architecture, and data processing, and analysis. In this research, the use of different machine-learning techniques is proposed, for the extraction of different information from an IoT platform connected to a machining center, working under real industrial conditions in a workshop. The aim is to evaluate which algorithmic technique might be the best to build accurate prediction models for one of the main demands of workshops: the optimization of machining processes. This evaluation, completed under real industrial conditions, includes very limited information on the machining workload of the machining center and unbalanced datasets. The strategy is validated for the classification of the state of a machining center, its working mode, and the prediction of the thermal evolution of the main machine-tool motors: the axis motors and the milling head motor. The results show the superiority of the ensembles for both classification problems under analysis and all four regression problems. In particular, Rotation Forest-based ensembles turned out to have the best performance in the experiments for all the metrics under study. The models are accurate enough to provide useful conclusions applicable to current industrial practice, such as improvements in machine programming to avoid cutting conditions that might greatly reduce tool lifetime and damage machine components.Projects TIN2015-67534-P (MINECO/FEDER, UE) of the Ministerio de Economía Competitividad of the Spanish Government and projects CCTT1/17/BU/0003 and BU085P17 (JCyL/FEDER, UE) of the Junta de Castilla y León, all of them co-financed through European-Union FEDER funds

    Módulo Moodle: trabajos fin de grado

    Get PDF
    Ponencia presentada en: VI Jornadas de Innovación Docente de la UBU, Burgos, 23 y 24 de febrero de 2012, organizadas por el Instituto de Formación e Innovación Educativa-IFIE de la Universidad de Burgo

    Database of novel magnetic materials for high-performance permanent magnet development

    Get PDF
    This paper describes the open Novamag database that has been developed for the design of novel Rare-Earth free/lean permanent magnets. Its main features as software technologies, friendly graphical user interface, advanced search mode, plotting tool and available data are explained in detail. Following the philosophy and standards of Materials Genome Initiative, it contains significant results of novel magnetic phases with high magnetocrystalline anisotropy obtained by three computational high-throughput screening approaches based on a crystal structure prediction method using an Adaptive Genetic Algorithm, tetragonally distortion of cubic phases and tuning known phases by doping. Additionally, it also includes theoretical and experimental data about fundamental magnetic material properties such as magnetic moments, magnetocrystalline anisotropy energy, exchange parameters, Curie temperature, domain wall width, exchange stiffness, coercivity and maximum energy product, that can be used in the study and design of new promising high-performance Rare-Earth free/lean permanent magnets. The results therein contained might provide some insights into the ongoing debate about the theoretical performance limits beyond Rare-Earth based magnets. Finally, some general strategies are discussed to design possible experimental routes for exploring most promising theoretical novel materials found in the database.European Horizon 2020 Framework Programme for Research and Innovation (2014-2020) under Grant Agreement No. 686056, NOVAMAG. European Regional Development Fund in the IT4Innovations national supercomputing center – path to exascale project, project number CZ 02.1.01/0.0/0.0/16–013/0001791 within the Operational Programme Research, Development and Educatio
    corecore